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Data100 5p22 Disc 6
Ordinary Least Squares

Attendance.
https://tinyurl.com/discémichelle




Announcements

Due Dates

-Homework 5 due March 3 (start early)
-Lab 6 due March 1

-Weekly check 6 due Feb 28
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Other
-Congrats on finishing the midterm!

-Calendly:
https://forms.gle/3BJjPjPbMkNHs2ir9




Modeling Process




Recap: Modeling Process

1 Choose a model 2. Choosg aloss 3. Fit the model 4. Evaluate model
function performance
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Recap: Modeling Process
Simple Linear Regression

2. Choose a loss . 4. Evaluate model

SLR model




Recap: Modeling Process
Simple Linear Regression

1 Choose a model 2. Choosg aloss 3. Fit the model 4. Evaluate model
function performance

L(y,39) = (y — 9)*




Recap: Modeling Process
Simple Linear Regression

1 Choose a model 2. Choosg aloss 3. Fit the model 4. Evaluate model
function performance

SLR model L1/L2 Loss, MSE Minimize Loss
with Calculus
T

(/” =7 ()l.r
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Recap: Modeling Process
Simple Linear Regression

1 Choose a model 2. Choosg aloss 3. Fit the model 4. Evaluate model
function performance

SLR model L1/L2 Loss, MSE l\\jlvli?;]ngglect?usss Visualizations, RMSE
L(y,9) = (y — 9)? b=r

0}, =7 (,51.1'
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4. Evaluate model
performance

SLR model ° S Visualizations, RMSE
L(y,9) = (y - 9)°

1. Choose a model
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Why Multiple Linear
Regression?

e Simple Linear Regression not enough for all use cases
o Often want to predict the value of the response variable
based on multiple predictor variables.
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Why Multiple Linear
Regression?

e Simple Linear Regression not enough for all use cases
Often want to predict the value of the response variable
based on multiple predictor variables.
E.g. predict points based on all 3 of
Field Goals (FG), Assists (AST), and 3 pointers (3PA)
SLR - can only predict points based on one out of
{FG, AST, 3PA}
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Modeling Process
Multiple Linear Regression

1. Choose a model ~




Modeling Process
Multiple Linear Regression

1. Choose a model ~




Modeling Process
Multiple Linear Regression

1. Choose a model
(y is a vector)

| Prediction vector Design matrix Parameter vector

R™ ]Rnx(p-H) ]R(p+l)
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Modeling Process
Multiple Linear Regression

!71-
1. Choose a model ‘ i
(y is a vector) ‘

Special all ones
feature - intercept
term | Prediction vector Design matrix Parameter vector

R™ ]Rnx(p-H) ]R(p+l)
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Modeling Process
Multiple Linear Regression

L2 Loss
2. Choose a loss
1 2
X d — L —_
function ('\,/\'Aegg)sq“are Error R(@) = | |Y XHI |2




Modeling Process
Multiple Linear Regression

L2 Loss

Mean Squared Error R(e) . 1 | |Y — X@l |2
(MSE) n 2
2. Choose a loss
function z
nal vector z : is




Modeling Process
Multiple Linear Regression

The value of theta that minimizes the MSE loss (R(0))
3. Fit the Model is




Modeling Process
Multiple Linear Regression

The value of theta that minimizes the MSE loss (R(0))
3. Fit the Model is




Modeling Process
Multiple Linear Regression

- : o?
4. Evaluate Model [ Multiple R? also called the i - Yesianceot fiited values 4
Performance coefficient of determination variance of y o}
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50 far: Modeling Process
Multiple Linear Regression

1. Choose a model 2. Choosg aloss 3. Fit the model 4. Evaluate model
function performance

MLR model L2 Loss, MSE Minimize L2 Loss R*2 coefficient
Ordinary Least Squares
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- —
2. Which of the following are true about the optimal solution # to ordinary least squares (OLS)?
Recall that the least squares estimate # solves the normal equation (X7X)# = XTY.

e Hint: OLS optimizes the MSE
EXXY —
=
J—— 2,2/5»
. Using the normal equation, we can derive an optimal solution for simple linear
regression with an L, loss.
. Using the normal equation, we can derive an optimal solution for simple linear
regression with an L, loss.
. Using the normal equation, we can derive an optimal solution for a constant model
with an L loss.

. Using the normal equation, we can derive an optimal solution for a constant model
with an L, loss.

. Using the normal equation, we can derive an optimal solution for the model specified
option B in question 1 (§ = ;2 + f, sin(x?)).

Teaching Page 22



3. Which of the following conditions are required for the least squares estimate in Question 2?
@ A. X must be full column rank.

O B. Y must be full column rank.&{%

OC. X must be invertible. &/ XT% i /LQ &wm
<

OD. XT must be invertible.
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Geometric Intultion




S
So far, we've thought of our model as
horizontally stacked predictions per datapoint:

We can also think of Y as a linear combination of feature vectors, scaled by parameters.

. 3 r

o

l — 0, X1 +602X.2
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Space that can be reached any combination of columns of X

span(X)
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Space that can be reached by any combination of columns of X
- span(X)
Could be any linear combination (e.g. this could be -2*col1 + 0.7*col2

’)lx:l +(/2X2
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Cannot go outside plane

01 X +02X.2
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However, Y need not be on the plane

01 X1 +02X:2
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How do we predict Y? Make a guess along plane that is closest

I)lX:1 +U2X2
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How do we predict Y? Make a guess along plane that is closest
How do determine closest? Drop a perpendicular

X6 connects to the perpendicular

I)lle +(}2X2
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X6 connects to the perpendicular

This is our best guess = X6

I)lle +(}2X2
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Define ¢-y -§=v-x0

le:l +U2X2
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Some nice properties

When using 0, residuals (e) are orthogonal to span(X) XTB = ()

Linear models with an intercept terms WILL HAVE the sum of their Z ei =0
residuals to be 0 =1

A least squares estimate 0 is unique only if X is full column rank
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4. Suppose we have a dataset represented with the design matrix span(X) and response vector Y.
We use linear regression to solve for this and obtain optimal weights as #. Label the following
terms on the geometric interpretation of ordinary least squares:

* X (i.e., span(X)) * The prediction vector X (using optimal parameters)
* The response vector Y~ « A prediction vector Xa (using an arbitrary vector ).
* The residual vector Y — X6

]
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(a) What is always true about the residuals in least squares regression? Select all that apply.

CJ A. They are orthogonal to the column space of the design matrix.
{1 B. They represent the errors of the predictions.

(0 C. Their sum is equal to the mean squared error.

O D. Their sum is equal to zero.

CJE. None of the above.

(b) Which are true about the predictions made by OLS? Select all that apply.

CJ A. They are projections of the observations onto the column space of the design
matrix.

[0 B. They are linear combinations of the features.
(] C. They are orthogonal to the residuals.
I D. They are orthogonal to the column space of the features.
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(c) We fit a simple linear regression to our data (z;,y;),i = 1,2,3, where z; is the inde-
pendent variable and y; is the dependent variable. Our regression line is of the form
y = 6y + #z. Suppose we plot the relationship between the residuals of the model and
the 7s, and find that there is a curve. What does this tell us about our model?

[0 A. The relationship between our dependent and independent variables is well rep-
resented by a line.

[0 B. The accuracy of the regression line varies with the size of the dependent vari-
able.

[0 C. The variables need to be transformed, or additional independent variables are
needed.

(d) Which are the following is true of the mystery quantity 7 = (1 — X(X"X)'X")Y?
[0 A. The vector ¥ represents the residuals for any linear model.

[0 B. If the X matrix contains the T vector, then the sum of the elements in vector 7
is0(ie. X, vi =0).

OO C. All the column vectors z; of X are orthogonal to 7.

O D. If X is of shape n by p, there are p elements in vector /.

OE. Forany a, Xa is orthogonal to 7.
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