

Data100 Sp22 Disc 6

Data 100 Sp22 Disc 6 Ordinary Least Squares

Attendance: https://tinyurl.com/disc6michelle

Recap: Modeling Process Simple Linear Regression 1. Choose a model 2. Choose a loss function 3. Fit the model 4. Evaluate model performance L1/L2 Loss, MSE $\hat{y} = \theta_0 + \theta_1 x$ $L(y, \hat{y}) = (y - \hat{y})^2$

Recap: Modeling Process Simple Linear Regression 1. Choose a model 2. Choose a loss function 3. Fit the model 4. Evaluate model performance SLR model L1/L2 Loss, MSE Minimize Loss with Calculus $\hat{y} = \theta_0 + \theta_1 x$ $L(y, \hat{y}) = (y - \hat{y})^2$ $\hat{\theta}_1 = r \frac{\sigma_y}{\sigma_x}$ $\hat{\theta}_0 = \bar{y} - \hat{\theta}_1 \bar{x}$

Recap: Modeling Process Simple Linear Regression 2. Choose a loss 4. Evaluate model 1. Choose a model 3. Fit the model function performance Minimize Loss Visualizations, RMSE L1/L2 Loss, MSE SLR model with Calculus $L(y,\hat{y}) = (y - \hat{y})^2$ $\hat{y} = \theta_0 + \theta_1 x$ $\hat{\theta_0} = \bar{y} - \hat{\theta_1}\bar{x}$

Why Multiple Linear Regression?

- Simple Linear Regression not enough for all use cases
 - Often want to predict the value of the response variable based on multiple predictor variables.

Why Multiple Linear Regression?

- Simple Linear Regression not enough for all use cases
 - Often want to predict the value of the response variable based on multiple predictor variables.
 - E.g. predict points based on all 3 of Field Goals (FG), Assists (AST), and 3 pointers (3PA)
 - SLR can only predict points based on one out of {FG, AST, 3PA}

	FG	AST	ЗРА	PTS
1	1.8	0.6	4.1	5.3
2	0.4	0.8	1.5	1.7
3	1.1	1.9	2.2	3.2
4	6.0	1.6	0.0	13.9
5	3.4	2.2	0.2	8.9
6	0.6	0.3	1.2	1.7

1. Choose a model y is scalar

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p$$

2. Choose a loss function

L2 Loss

Mean Squared Error (MSE)

$$R(\theta) = \frac{1}{n} ||\mathbb{Y} - \mathbb{X}\theta||_2^2$$

2. Choose a loss function

L2 Loss Mean Squared Error
$$R(heta) = rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2$$

For the n-dimensional vector $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$, the **L2 vector norm** is

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$

4. Evaluate Model Performance

Multiple R², also called the coefficient of determination

$$R^2 = rac{ ext{variance of fitted values}}{ ext{variance of }y} = rac{\sigma_y^2}{\sigma_y^2}$$

2. Which of the following are true about the optimal solution $\hat{\theta}$ to ordinary least squares (OLS)? Recall that the least squares estimate $\hat{\theta}$ solves the normal equation $(\mathbb{X}^T\mathbb{X})\theta = \mathbb{X}^T\mathbb{Y}$.

$$\hat{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$$

Hint: OLS optimizes the MSE

- \clubsuit A. Using the normal equation, we can derive an optimal solution for simple linear regression with an L_2 loss.
- \square B. Using the normal equation, we can derive an optimal solution for simple linear regression with an L_1 loss.
- \clubsuit C. Using the normal equation, we can derive an optimal solution for a constant model with an L_2 loss.
- \square D. Using the normal equation, we can derive an optimal solution for a constant model with an L_1 loss.
- Using the normal equation, we can derive an optimal solution for the model specified option B in question 1 ($\hat{y} = \theta_1 x + \theta_2 \sin(x^2)$).

 $\mathcal{X} = \begin{bmatrix} 1 & \mathcal{X} \end{bmatrix} \qquad \Theta = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\hat{y} = X \Theta = \Theta_0 + G_1 \times Z$

Some nice properties

When using θ, residuals (e) are orthogonal to span(X)

$$\mathbb{X}^T e = 0$$

ullet Linear models with an intercept terms WILL HAVE the sum of their $\sum_{i=1}^n e_i = 0$ residuals to be 0

$$\sum_{i=1}^{n} e_i = 0$$

A least squares estimate θ is unique only if X is full column rank

(a) What is always true about the residuals in least squares regression? Select all that apply.			
□ A. They are orthogonal to the column space of the design matrix.			
□ B. They represent the errors of the predictions.			
□ C. Their sum is equal to the mean squared error.			
□ D. Their sum is equal to zero.			
☐ E. None of the above.			
(b) Which are true about the predictions made by OLS? Select all that apply.			
 A. They are projections of the observations onto the column space of the design matrix. 			
□ B. They are linear combinations of the features.			
□ C. They are orthogonal to the residuals.			
□ D. They are orthogonal to the column space of the features.			

(c) We fit a simple linear regression to our data (x_i, y_i) , $i = 1, 2, 3$, where x_i is the independent variable and y_i is the dependent variable. Our regression line is of the form $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 x$. Suppose we plot the relationship between the residuals of the model and the $\hat{y}s$, and find that there is a curve. What does this tell us about our model?	
 A. The relationship between our dependent and independent variables is well represented by a line. 	
□ B. The accuracy of the regression line varies with the size of the dependent variable.	
C. The variables need to be transformed, or additional independent variables are needed.	
 (d) Which are the following is true of the mystery quantity v = (I − X(X^TX)⁻¹X^T)Y? □ A. The vector v represents the residuals for any linear model. 	
\square B. If the $\mathbb X$ matrix contains the $\vec{1}$ vector, then the sum of the elements in vector \vec{v} is 0 (i.e. $\sum_i v_i = 0$).	
\square C. All the column vectors x_i of \mathbb{X} are orthogonal to \vec{v} .	
\square D. If $\mathbb X$ is of shape n by p , there are p elements in vector \vec{v} .	
\square E. For any α , $\mathbb{X}\alpha$ is orthogonal to \vec{v} .	