Data100 5p22 Disc 5
Modeling/Loss

Attendance.
https:/tinyurl.com/disc5michelle



Announcements

Due Dates Other
-Homework 5 due March 3 (start early) -Review session Feb19 (tomorrow lol) 1-4pm
-Lab 4 due Feb 22 *I'll be teaching visualizations :D *
-Weekly Check 5 due Feb 28
\\ /



Transformations




Motivation

1. Transformations can help ‘'normalize’ skewed data
e Normal curve has several nice properties (e.g 68-95-99.7 rule)
o |eft Skew -> Square or Cube Data
e Right Skew -> Square Root or Log Data



Motivation

1. Transformations can help ‘'normalize’ skewed data
e Normal curve has several nice properties (e.g 68-95-99.7 rule)
e |eft Skew -> Square or Cube x-axis
e Right Skew -> Square Root or Log x-axis
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Motivation

2. Extract hidden linear relationships
e Often difficult to visualize relationships when our data is non-linear
e Transforming data can reveal hidden linear relationships!
e \We like linear relationships because they are easy to model!



Motivation

2. Extract hidden linear relationships
Often difficult to visualize relationships when our data is non-linear

Transforming data can reveal hidden linear relationships!
We like linear relationships because they are easy to model!
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\What transformation do | use?
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\What transtformation do | use?

- Use log(Y) = log(elasticity) or X~2 = charge”2



\What transformation do | use?

- Use log(Y) = log(elasticity) or X~2 = charge”2



Absolute Scale log-log Scale
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Let C and k be some constants and z and y represent mass and metabolic rate, respec-
tively. Based on the plots, which of the following best describe the pattern seen in the
data? Reminder: log(ab) = log(a) + log(b).

OA. y=C+kz OB. y=Cx10¥ OC. y=C+klogy(x) @D. y=Czt

(b) What parts of the plotsqcould you use to make initial guesses on C' and k?
C=- 12 =Ha s y-int of L»g- Z-"g SwaP),
k = SLﬂPc 20 2.::9_ Laa 3Yo}>)-,

(c) Your friend points to the solid line on the log-log plot and says “since this line is going

up and to the right, we can say that, in general, the bigger a mammal is, the greater its
metabolic rate”. Is this a reasonable interpretation of the plot?

Y&9 - SL’?C z 2







What is KDE?

e Kernel Density Estimation allows us to estimate density curve (probability
density function)
o Total area under curve must sum to 1



Why use KDE?

e \Why do this?
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o 'Smoothing’ 1-dimensional data
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Why KDE over histogram?

e (anvary the alpha to make things more interpretable using KDE
e KDE gives us a better sense of the underlying structure (density curve) of
the data -> better analysis



Tnree Steps to Create a KDE

e Place a kernel at each data point
o E.g. Gaussian Kernel w bandwidth alpha=1 (creates tiny normals)
o (an pick other kernels too!

e Normalize (scale) kernels
o Total area must be one!

e Sum kernels



Tnree Steps to Create a KDE

Step 1 - Placing Kernel Step 2 - Normalizing Step 3 - Summing




Alpha

e Alphais bandwidth parameter, aka. Smoothness
o Higher alpha = more smooth....but be careful of TOO smooth
o Losing structure present in data

KDE of tips with Gaussian kernel and @ = 0.1 KDE of tips with Gaussian kernel and @ = 1 KDE of tips with Gaussian kernel and a = 2 KDE of tips with Gaussian kernel and @ = 10

Alpha=10




Alpha (Bandwidtn)

e Alphais bandwidth parameter, aka. Smoothness
o Higher alpha = more smooth....but be careful of TOO smooth
o Losing structure present in data

KDE of tips with Gaussian kernel and @ = 0.1 KDE of tips with Gaussian kernel and @ = 1 KDE of tips with Gaussian kernel and a = 2 KDE of tips with Gaussian kernel and @ = 10

Alpha=10




Types of Kernels

CEUSSER Boxcar







Modeling and Loss Functions

-Why do we use models?
e Modeling is a way we represent the world, can help us understand data
and make predictions
e Examples: Constant model, SLR (simple linear regression)

-How do we evaluate models?
e Loss functions!



WA L1 Loss

MSE (Average Squared Loss) MAE (Average Absolute Loss)
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Minimized with sample mean: Minimized with sample median:

0 = mean(y) ) = median(y)




Choosing a loss function

-L1 loss is more robust, not affected by outliers as much
-Will compare L1 and L2 more later!



target_speed degree_turn ’-I

10Sg =

count  500.000000 500.000000
meoian

mean 32923408 143.721153
std 46678744 153.641504 L2 (usg »

min 0.231601 0.000000 meav)

12.350025 6.916210
25.820689 45.490086
39.788716  323.197168
379.919965 359.430309

)

(a) Suppose the first part of the model predicts the target speed of the car. Using constant
models trained on the speeds on the collected data shown above with L; and L, loss
functions, which of the following is true?

@ A. The model trained with the L; loss will always drive slower than the model
trained with L, loss.

(O B. The model trained with the L, loss will always drive slower than the model
trained with L; loss.

(O C. The model trained with the L, loss will sometimes drive slower than the model
trained with L loss.

(O D. The model trained with the L, loss will sometimes drive slower than the model
trained with L; loss.




(b) Finding that the model trained with the L, loss drives too slowly, Adam changes the loss
function for the constant model where the loss is penalized more if the speed is higher.

That way, the model wants to optimize more for the case where we wish to drive faster

since the loss is higher, accomplishing his goal. diffeyentiare
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(c) Suppose he is working on a model that predicts the degree of turning at a particular time
between 0 and 359 degrees using the data in the degree_turn column. Explain why a
constant model is likely inappropriate in this use case.

Extra: If you’ve studied some physics, you may recognize the behaviour of our constant

model!




(d) Suppose we finally expand our modeling framework to use simple linear regression (i.e.
fo(z) = 040 + 0, 1). For our first simple linear regression model, we predict the turn
angle (y) using target speed (x). Our optimal parameters are: 0,0 = 0.019 and 0,1 =
143.1.

However, we realize that we actually want a model that predicts target speed (our new )
using turn angle, our new x (instead of the other way around)! What are our new optimal
parameters for this new model?




